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ABSTRACT

An empirical evaluation of glacial trough cross-section shape is performed on seven vertical cross-sections in three Sierra
Nevada valleys glaciated during the late Quaternary. Power and second-order polynomial functions are fitted by statistical
regression. Power functions are very sensitive to subtle valley-bottom topographic features and require precise specifica-
tion of the valley-bottom-centre location. This dependency is problematic given under-representation of valley bottoms by
conventional contour-sampling methods, and the common alteration of valley-bottom morphology by non-glacial pro-
cesses. Power function exponents vary greatly in response to these and other non-genetic factors and are not found to
be reliable indicators of overall valley morphology.

Second-order polynomials express overall valley shape in a single robust function. They are applied to both bedrock-and
sediment-floored glacial valleys with negligible statistical bias except where side-slopes are stepped or convex-upward or
where valley form is asymmetrical. They can describe alluviated or severely eroded valleys, and can objectively identify indi-
vidual components of polymorphic valleys, because valley bottom and centre locations need not be specified. Mathematical
expressions of parameters useful for gegomorphic measurements and glaciological modelling are analytically derived from
the polynomials as functions of the three polynomial coefficients. These parameter equations provide estimates of valley
side-slopes, mean and maximum depth, midpoint location, width, area, boundary length, form ratio and symmetry.
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INTRODUCTION

It is commonly believed that glacial trough cross-section morphology can be described as a parabolic curve.
The early history of this notion is explored by Harbor (1989) who identifies McGee (1883) as both a propo-
nent of the concept and a pioneer in the examination of process—form relationships. A common quest in
glacial geomorphology over the last quarter century has been the derivation of simple mathematical expres-
sions of valley topographic form. Such expressions can provide tools for geomorphic measurement, data
description and reduction, generation of model parameters, and for testing and understanding theories of
process—form relationships. Specifically, several attempts have been- made to express the two-dimensional
topographic form of glaciated valleys as a function of lateral distance across the valley. These studies
have been motivated by attempts to differentiate glacial from fluvial valley forms, to quantify the degree
or intensity of glacial erosion (Doornkamp and King, 1971; King, 1974; Hirano and Aniya, 1988), and to
develop numerical models of glacial trough evolution (Harbor et al., 1988; Harbor, 1992).

Because of the great variability in glacial valley morphology, no single, simple function has been identified
or is likely to emerge that can adequately describe all glacial valley cross-sections. Doornkamp and King
(1971) applied 16 different univariate mathematical functions to three glacial valleys. Based on correlation
coefficients, squares of both the independent and dependent variables (lateral and vertical distance, respec-
tively) provided the best least-squares fit in two cases but did poorly in the third case. Semi-log expressions
with log elevation yielded high coefficients of determination in all three cases. Power functions (log-log)
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provided satisfactory regressions in two of the three cases, but were inappropriate in the third case. These
variations in the best-fit model suggest that no single model is best in all cases and that the conventional
power model is not necessarily superior to other alternatives. This paper tests the power function model
and an alternative quadratic model on seven Sierra Nevada valley transects that were glaciated at least twice
during the late Quaternary to ice depths in excess of 300 m.

Power functions

Power functions are conventionally derived empirically through the use of a monomial expressing elevation
above the trough floor as a power of lateral distance from the trough-bottom centre (Svensson, 1959; Graf,
1970; Doornkamp and King, 1971; King, 1974; Embleton and King, 1975; Harbor and Wheeler, 1992):

H=dx (1)

where H is height above the lowest point in the section, X is lateral distance from the trough centre, d is a
coefficient, and the exponent (f) is the logarithmic slope of the function. These functions express the
form of a half-valley, so it is not uncommon to average data from both sides to develop a single ideal
half-valley curve (Svensson, 1959; Graf, 1970). Since the resultant curves are rarely true parabolas with
an exponent of 2:0, these models are referred to in this report as ‘power functions.” Svensson (1959) claimed
that this form yields the best approximation of glacial valley cross-sections.

Several studies have suggested that valley morphology progressively approaches a true parabolic form
with increasing extent of glacial erosion, and that stage of valley evolution can be detected through increases
in the power function exponent toward 2:0 (Svensson, 1959; King, 1974; ¢f. Graf, 1970; Hirano and Aniya,
1988). The premise is that non-glacial valleys have relatively linear sides with exponents close to one, but that
glaciation ultimately widens valley bottoms into a parabolic shape. For example, King (1974) interpreted a
valley with an exponent close to 2:0 as having been actively glaciated, while two other valleys with exponents
of 1:68 and 1-75 were occupied by diffluent glaciers and were less actively glaciated. Graf (1970) pointed out
that power function exponents can provide a complete description of valley form only by the additional spe-
cification of the form ratio (depth/width). He found, in samples from 61 Beartooth Mountain valleys, that
higher-order valleys with greater ice discharges tended to be deeper, narrower and closer to parabolic than
lower-order valleys, but that exponents tended more towards 1-6 than 2:0. The hypothesis of progressive,
systematic increases in power function exponents has been criticized by Harbor (1990) since it assumes
that glacial erosional forms tend towards maximum efficiency or minimum friction, neither of which has
been demonstrated.

Power functions have also been applied to glaciated valleys in an attempt to identify valley bottoms buried
in alluvium or where glaciers remain. The difficulty with this application is that valley-bottom horizontal and
vertical locations must be specified to define the coordinate system before functions can be derived (Wheeler,
1984). Aniya and Welch (1981) attempted to resolve this dilemma by calculating power functions using var-
ious valley-bottom depths and iteratively converging on the origins for the function that yielded the highest
explained variance. Valley-bottom coordinates are varied in this study to evaluate the feasibility of this
procedure.

Polynomial functions

An alternative model of glacial valley cross-section form is a quadratic equation in the form of a second-
order power series:

E=a+bS+cS* 2)

where E is elevation above a datum such as sea level, S is lateral distance from the reference station, and a, b
and c are coefficients (Wheeler, 1984; Augustinus, 1992a). Second-order polynomials provide robust para-
bolic expressions of valley form largely free of the data requirements and limitations of power functions,
although their flexibility is limited by the fixed exponent. By fitting both sides of the valley at once, these
equations provide a measure not only of hillslope form but also of overall two-dimensional valley shape.

GLACIAL VALLEY MORPHOLOGY 415

Svensson (1958) dismissed the polynomial equation as merely a means for locating the coordinates for power
functions, which he favoured owing to their greater versatility. Girard (1976) and Svensson (1958) derived
polynomial functions using the valley centre point to define the horizontal coordinate system axis. The
present study utilizes a datum at the upper valley wall where lateral moraines, trim lines or erratics can pro-
vide a clear limit to the glacial extent based on field evidence. This datum is referenced to coordinates of zero
in the horizontal direction and elevation above sea level in the vertical dimension. This axis definition is opti-
mal where mapping has located ice elevations on valley walls, or where trough bottoms have been altered. It
also permits the use of analytical depth and shape parameters presented at the end of the paper.

THE STUDY SECTIONS

Seven valley transects were sampled from three valleys in the northwestern Sierra Nevada of California. Six
of the transects, three from Bear Valley and three from South Yuba Canyon (the Yuba Gorge), are located
within a small area covered by the Blue Canyon 1:24,000 U.S. Geological Survey quadrangle (Figure 1).
These six sections were selected to analyse the morphological dichotomy between two neighbouring glacial
troughs that are part of another study testing a hypothesis of Quaternary glacial drainage diversion (James,
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Figure 1. Locations of the transects in Bear Valley and Yuba Gorge. The South Yuba River turns abruptly 110° at the site of a glacial
diversion into Yuba Gorge. Contours generated from 1:250,000 digital elevation model; hydrography from Tiger file GIS coverages
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in press). The Tenaya Canyon transect is located about 200 km to the south-southeast in Yosemite Valley.
The valleys at most of the transects are eroded into relatively resistant granitic or metamorphic rocks
(Table I), but the two upper Bear Valley transects cross an exhumed palaeovalley with walls of incompetent
epiclastic fill, floored by an unknown depth of outwash.

The upper Bear Valley is a broad, straight trough about 2-5km wide and 250 m deep that extends about
2km longitudinally between metamorphic outcrops (Figure 2). Two valley sections (BV1 and BV2) are
located in this broad portion of the valley. Metamorphic benches between elevations of 1370 and 1500
and 1600 m at the lower end of Bear Valley represent eroded spurs normal to the Bear Valley axis. The ances-
tral Yuba channel passed through the northwest wall of Bear Valley between the benches in a deep, wide
palaeovalley that was later filled with more than 250m of andesitic lahars (Lindgren, 1900, 1911; James,
in press). Bear Valley is broad where the palaeovalley has been exhumed and narrows across the bench at
transect BV3. Bench surfaces were deeply glaciated at least twice during the late Quaternary, as is evidenced
by moraines high on valley walls (James, in press), so differences in trough morphology between BV3 and the
other Bear Valley sections are interpreted as responses to differences in lithology and valley gradient.

Yuba Gorge is a deep, narrow, sinuous gorge cut into metamorphic and granitic rock (Figure 3). Evidence
of glaciation includes moraine ridges and erratics on the upper valley rim and polish and striae within the
gorge (James, in press). The gorge held an outlet glacier and apparently carried most of the subglacial melt-
water from the west side of the ice field during the last glacial maximum. The gorge has very steep longitu-
dinal slopes reaching a maximum gradient greater than 8 per cent averaged over 0-75km across rock bar
surfaces below the junction with Bear Valley.

Tenaya Canyon is higher than the other valleys and was also occupied by late glacial ice (Matthes, 1930).
The transect is across a deep, narrow gorge eroded into granitic rock 6 km upvalley from the main Yosemite
Valley and 4 km up from Half Dome. Tenaya is included to represent a deep, narrow valley with a long-stu-
died glacial history.

The effects of bedrock and valley gradient are not explicitly examined in this study, but appear to be
important variables determining valley shape. The five narrow valley cross-sections are all in igneous or
metamorphic rocks and the four deepest of these sections (South Yuba and Tenaya sections) are also asso-
ciated with steep gradients. The two wide Bear Valley sections are developed in incompetent rock in a valley
of low gradient. This relationship is in agreement with the observations of Embleton and King (1975, p. 253)
that V-shaped glaciated valleys are associated with steeper gradients than U-shaped glacial valleys. It is also
in agreement with the findings of Augustinus (1992a, b) that New Zealand Fiordland valleys eroded in lithol-
ogies of high rock mass strength (RMS) have narrower valleys than those with low RMS in fractured zones.

Table I. Valley transect characteristics

Rock type

Location D Upper Lower Floor
Bear Valley 1 BV1 Epiclastic Epiclastic Alluvium
Bear Valley 2 BV2 Epiclastic Epiclastic Alluvium
Bear Valley 3 BV3 Epiclastic M phic M

South Yuba 1 SY1 M phic M phic M

South Yuba 2 SY2 Granitic Granitic Granitic
South Yuba 3 SY3 Granitic Granitic Granitic
Tenaya Canyon ~ TEN Granitic Granitic Granitic

Epiclastic = andesitic lahars; primarily poorly sorted, unconsolidated breccia

Metamorphic = weakly metamorphosed, strongly deformed, Palaeozoic sandstone and grey-
wacke (quartzite); the Lang-Halsted unit of the Shoofly Complex. Almost vertical bedding
strikes approximately north-south

Granitic = felsic, Devonian granitics of Bowman Lake pluton, variously mapped as a true gran-
ite and trondhjemite
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Figure 2. View south across Bear Valley at Transect 2 which begins at arrow and crosses at dashed line above a low recessional r_norai_ne.
Transect 1, out of view to the left, also has a wide, flat alluvial floor with widely spaced valley walls composed of layered epiclastics

Figure 3. View east up Yuba Gorge across SY3 showing straight valley walls and steep longitudinal gradient eroded in granitic batholith;
contact with metamorphic rock is upvalley, out of view
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The roles of lithology and gradient in glacial trough deepening pose a limit on the ability to assess glacial
processes from trough cross-section morphology alone.

SAMPLING PROCEDURES

Valley cross-sections were sampled from 1:24,000 topographic maps with 12-2m (40 ft) contour intervals,
except for Tenaya Canyon which was sampled from Matthes’ (1930) map with 15-2m (50 ft) contour inter-
vals. Map distance along each transect was measured under magnification to the nearest 0-1 mm at each
point where a contour line crosses the transect; each station-elevation data pair was entered into a computer
spreadsheet. This ‘contour-crossing’ sample method, commonly employed to generate valley cross-sections
(e.g. King, 1974), is biased towards steep slopes and under-represents flat areas, such as valley centres, where
there are few contour lines. Alternative sampling methods that could eliminate sample bias (e.g. field topo-
graphic surveys or photogrammetry) or improve resolution (e.g. digital elevation models or interpolations of
points between contour lines) may not be warranted.

Numerous problems are associated with the use of valley-bottom data. First, log-log least-squares solu-
tions used to derive power functions are biased towards small distances and elevations. For this reason, Har-
bor and Wheeler (1992) advocate measuring valley-bottom points as accurately as possible and emphasizing
these locations in sampling. The contour sample method is biased towards steep slopes, however, so the
points most influential to curve-fitting are poorly represented by samples. The importance of this sample
bias was tested in the two upper Bear Valley transects using data augmented by interpolated valley-bottom
observations.

To characterize glacial valley form with power functions, the appropriate surface to sample is the bedrock
valley floor free of post-glacial sediment or erosion. Alluvial surfaces should be avoided because they can
cause increases in power function exponents (Graf, 1970; Aniya and Welch, 1981; Harbor and Wheeler,
1992). Unfortunately, the power function method is not simply influenced by valley-bottom data, but
requires the valley-bottom centre to be precisely located horizontally and vertically in order to define the
origin of the coordinate system (Wheeler, 1984). The need to specify precisely the origin and valley-bottom
data presents a serious dilemma in areas of post-glacial cut or fill, which are common.

Given variations in methods of data collection and coordinate system definition, this study performs a sen-
sitivity analysis on curve-fitting methods using datasets with three different degrees of valley-bottom repre-
sentation: all contour data alone, contour data augmented in valley bottoms (power functions only), and all
valley-bottom data omitted. Power function coordinate system reference points are also varied to examine
the sensitivity of function exponents and regression coefficients of variation (R?) to the procedure employed.
The latter test is motivated by the need to repeat Wheeler’s (1984) demonstration of the importance of coor-
dinate system pl which is inconcl owing to the use of Doornkamp and King’s (1971) flawed
equation (Harbor and Wheeler, 1992).

The polynominial model applied by this study does not require designation of valley-bottom points,
because the coordinate system is defined by a point high on the valley side. Nevertheless, this model was
applied to the upper Bear Valley sections with and without valley-bottom data to test model sensitivity,
and to two other sections to isolate distinct morphological components. On most transects, the upper limit
of valley sides was set at ice margin elevations based on field evidence of lateral moraines or upper erratic
limits on one side, assuming an equal ice level on the opposite side. The glacial advance used for reference
was not the most extensive in these valleys but represents the latest glaciation of these valleys and is pre-
sumed to be chronostratigraphically correlated with the last glacial maximum. Upper limits of the first
and third Yuba Gorge transects were set at distinct topographic breaks in side-slope below and above the
Tioga ice surface, respectively. Upper limits in Tenaya Canyon are based on ice margins of the ‘Wisconsin’
stage shown on Matthes’ (1930) map.

CURVE-FITTING METHODS

Linear regressions were performed on transformations of the station-elevation data to derive mathematical
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functions of valley morphology. All functions were tested for computation errors by summing regression
residuals to zero (Draper and Smith, 1966). For power functions, data manipulation began with identifica-
tion of the coordinate system. Centre points in bedrock-floored valleys were located at the valley thalweg. In
the two Bear Valley alluvial sections, centre points were located midway between the two valley sides defined
at the ice surface level, and midpoint elevations were defined at the minimum elevation. Data were reordered
by setting lateral distances to zero at valley centres and increasing outward. Elevations were referenced to the
lowest point on each half transect by subtracting the minimum elevation. Finally, zero elevation and station
data points were eliminated to prevent log-of-zero errors, and logarithms were taken of both station and
elevation data.

Power functions were derived for each half valley by univariate linear regression on the log-transformed
values (Svensson, 1959; Draper and Smith, 1966; p. 132; Doornkamp and King, 1971; King 1974; Harbor
and Wheeler, 1992):

logH = g + flogX 3)

Exponentiating both sides of Equation 3 yields the power function of Equation 1. Heights predicted by
Equation 1 can be converted to elevations by adding the elevation of the minimum point.

Polynomial functions were derived by regression of elevation above sea level on both station and station
squared (independent variables in Equation 2), where station is lateral distance from the left-side datum. It is
not necessary to split samples, zero and adjust elevation data, identify valley minima, or specify valley-bot-
tom coordinates, but only to identify beginning and ending station points, reference the station data to zero
at the first station, and calculate squares of the station data. With the enhanced availability and capability of
computers to perform the analysis, this technique requires less effort than power functions because it obvi-
ates most data pre-processing.

POWER FUNCTION RESULTS

Most regressions for both models were significant (a = 0-001), and explained variance (R?) was typically
greater than 90 per cent (Tables II and III). Elevation data along transects have strong serial correlations
(Doornkamp and King, 1971; p. 284), however, so significant regressions are common, even when systematic
residual distributions indicate an inappropriate model. Explained variance is reported to provide a relative
measure of the success of models at curve-fitting rather than to test hypotheses at a given significance level.

All contour data

Power functions derived using all contour data yielded statistically significant regressions, with all but one
of the 14 functions having explained variances greater than 90 per cent (Table II). Three categories of valley
functions can be identified: (1) the four broad upper Bear Valley profiles with high exponents (16 to 3-3); (2)
the stepped profiles of Tenaya Canyon, lower Bear Valley, SY1-R, and SY2-L with low exponents (0-8 to
1-05); and (3) the other South Yuba profiles which are steep with moderate exponents (1-15 to 1:6). However,
many functions have exponents that do not represent the overall valley morphology, owing to domination
by a few valley-bottom data points. For example, the four non-stepped South Yuba profiles have overall
morphologies very close to linear; the SY1-L and SY2-R overall profiles are slightly concave-upward, while
both SY3 overall profiles are slightly convex-upward (Figures 4 and 5). Yet only the exponent for SY2-R is
of the appropriate sign and magnitude (1-15) for the observed form. The two convex-upward SY3 profiles
intuitively should have exponents less than one (Figure 5A), but sample points near the channel dominate
the power function regressions and both models express a concave-upward form. The log—log plot of the
left profile illustrates how the regression is dominated by subtle topographic changes within 30m of the
valley bottom (Figure 5B). This corroborates Harbor and Wheeler’s (1992) conclusion that power functions
are very sensitive to local form components of valley bottoms. It also suggests a lack of reliability of power
function exponents as indicators of overall valley form, in spite of high coefficients of determination.

Power functions for the two alluviated Bear Valley transects yield high explained variances, and appear to
be good functional expressions of these sections. Exponents of functions for the right side are representative
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Table I1. Power functions Table III. Polynomial functions
D Side Method Function R N D Method Elevation functions (a + bS + ¢S?) R N
BVI L AILCtr2000 0:0000101X%* 0-950 24 BVI All 1653 — 0-476S -+ 0-000208S> 0-988 52
BVI R AlLCrt2000 0-000670X " 0977 25 BV1 NoCl1475 1663 — 0-547S + 0-000238S> 0994 36
y 177 .
BV1 L AllCrt1842 000143X "/ 0972 4 BV2 All 1667 — 0-524S + 0-0002228> 0996 53
BVl R AlLCrt1842 0:00971LX 7 0973 25 BV2 NoC1500 1667 — 05118 +0-0002175 0996 30
BVI L AlLCrt2000,0r@50 0-0330x ™" 0979 24
BV1 R AlLCrt2000,0r@50 0-0983x"" 0948 25 BV3 All 1609 — 0-364S -+ 0-000161S? 0-812 61
BVI L AlLCrt1842,0r@50 0-514X°°17 0-961 24 BV3 NoC1380 1598 — 0-2915 + 0-0001235> 0-846 50
BVI R AlLCrt1842,0r@50 0-541X° “"l‘sﬁ 0-931 25 BV3 NoC1430-1500* 1592 — 0-2365 + 0-0001065> 0-787 37
vV Y - : X
By L Interp'd Pts -00306X 0823 3 syl All 1621 — 1-1498 + 0-0008965> 0932 53
L R Interp'd Pts oo182% 093 30 ‘ syl NoC1330 1617 — 1-070S + 00008275 0926 38
BV1 L NoCl1475 0-0000157x2%7 0-989 17 | oC - +
BVI R NoC1475 0-0000108X%2 099967 19 | sY2 All 1813 — 0-790S -+ 00003285 0623 81
BVI L NoCl1475,0r@50 0-000502X* 0981 17 SY2 NoC1560 1690 — 0-281S + 0:000120S> 0-823 21
BVI R NoC1475,0r@50 0-00111x 0998 19 SY2 C < 1540f 1577 — 0:386S + 000142757 0-961 59
BV2 L Al 0-0000000138X°% 0989 25 SY3 Al 1639 — 12895 + 0:0008035? 0916 86
BV2 R All 000489 - 0996 2 SY3 NoC1250 1579 — 0:923S + 0-0005785” 0973 49
BV2 L Interp'd Pts 0:0183X 0-804 36 )
BV2 R Interp’d Pts 00035916 0-956 30 Ten All 2222 — 1-3575 + 0-0009405' 0939 77
BV2 L NoC1450 0-000000343 X284 0-991 19 Ten NoCl1870 2194 — 1-118S + 0:000775S> 0:980 44
BV2 R NoC1450 oor2x 0996 21 +1430-1500 are clevation limits (m) of ot and right s veh
BV2 L NOC1450,0f 50 0-0000536X" 0995 19 - Y are c_eva 1on imits (m) of left and rnight sides, respectively
BV2 R NoCl 450,0:% 5 013913 0993 2 1€ < 1540 is the inner gorge only (below 1540 m) of SY2
BV3* L All 0-467X° ji‘l’ 0-962 26
BV3: R All 2:041X° i 0910 34 of values commonly reported for intensively glaciated valleys (1-6 and 1-8), but the left side of Bear Valley
gz; Ili Egg;gg lggi’l&’,\; ggg? ;g has abnormally large exponents (2-44 and 3-30 for BV1 and BV2, res.peclively). Ma§s wasting depqsits at the
base of slopes, which are very subtle on aerial photographs, strongly influence functions on BV1 (Figure 6A).
SY1 L All 0:0272x"% 0-953 29 A representative log—log plot of the right side of the valley (Figure 6B) shows that the model fits the log data
SY1* R 0-198x"1% 0-877 23
SY1 L NoCl1330 0-108x"% 0-989 22
SY1* R NoC1330 0-000144x>"7 0-984 16
SY2* L All 0-590x%% 0-908 2 1900
SY2 R All 0-251x""* 0972 38
SY2* L NoC1540 33-52x°%7 0929 13 ‘
SY2 R NoCl1540 0-286x""* 0-993 9
SY3 L All 0-218x"" 0-946 43 1700
SY3 R All 0-0428x14 0958 42 \
SY3 L NoC1250 0924x°%% 0998 25 _ - 3
SY3 R NoC1250 0-528x"% 0-99913 24 B NI
Ten* L All 2:64x°% 0943 38 5 15004 /
Ten* R All 293x°™! 0982 37 g
Ten L Interp,Or@Btm 86-0X°2 0-570 38 3
Ten R Interp,0r@Btm 95550210 0-559 37 w - South Yuba 2
Ten L NoC1870 0-772x°%° 0-964 2 Y A
Ten R NoC1870 0-753x%% 0-922 2 1300-{ .
Ten L NoC1870,0r@Bench 0-000192x22! 0-994 25 s -,
Ten R NoC1870,0r@Bench 0:000129x>% 0969 25 7908 Gonter bata Oy,
E = 1577-1.386'S
* Stepped profiles +0.00143872
AlL: all contour data used for sample 1100 " v
Interp: valley-bottom data interpolated assuming a flat bottom 0 500 1000 1500 2000 2500 8000 3500
NoCuxxx: no centre points used in curve fitting; data omitted below xx m elevation Station (m)
NoCxxx,0r@50: no centre data points used; vertical axis origin lowered 50 m
Or@Btm,Or@Bench: vertical axis origin set at channel bottom or bench Figure 4. Yuba Gorge Transect 2 with polynomials derived using all data, no data below 1560 m, and no data above 1525 m. The com-
@2000 or @1842: horizontal centre point used in BV1 posite valley polynomial is not an acceptable model, but the other two valley partitioning into two parts

R,L: right and left side (looking downvalley), respectively
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Figure 5. Yuba Gorge Transect 3, an over-deepened canyon with sightly convex-upward side-slopes. (A) Power functions using all con-
tour data have > 1-0, i pward slopes due to microtopography at slope base. Owing to convex side-slopes,
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beyond 100 m fairly well, but the regression line is pulled up from the centre by a few points on the colluvial
surface. This valley-bottom influence lowers the regression line slope and underestimates elevations at the
valley rim in a manner similar to the example presented by Harbor and Wheeler (1992, Fig. 2). Many
data points up on the valley wall are compressed on the log plot into the small segment at stations greater
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than 900 m and, because their log-errors are small, they fail to pull the regression line up to higher elevations.
Both functions at BV2 have less colluvium, smaller regression errors and high explained variance, and
provide good models of valley morphology at that site, is spite of the alluvial fill.

Power functions for the bedrock-floored Tenaya Canyon are convex-upward (f < 0-804) owing to the
inner gorge, which is eroded about 200 m into the base of a broader trough (Figure 7A). Convex-upward
power functions were also derived for the other stepped profiles (BV3 and SY2-L) except for SY1-R, which
came out essentially linear (f = 1-05). While these models of stepped profiles are flawed by systematic errors,
there is no simple alternative model and stepped profiles should be avoided for morphological analyses of
this nature.

Centre data augmented by interpolation

Power function regressions were not improved by a more complete sample representation of alluvial valley
bottoms. In fact, the addition of interpolated points degraded power function results considerably for the
two upper Bear Valley transects in terms of both explained variance and systematic error (Figure 6B). Expo-
nents decreased in all cases except for BV2-R, which remained constant. This empirically verifies the rela-
tionship shown schematically by Harbor and Wheeler (1992) in which an alluvial valley floor distorts the
function as a result of biased control by points close to the origin. The loss of data representation due to
sample bias of the contour method was beneficial in the previous case, because data points on the valley
flat do not conform to the power function model, yet are highly influential to its derivation. Greater repre-
sentation of valley bottoms does not resolve but exacerbates difficulties in fitting the power functions.

Data were also augmented in an attempt to simulate a hypothetical flat floor in Tenaya Canyon. When
used with the original valley bottom as the elevation axis origin, interpolated points failed to produce viable
power functions (Figure 7B). The curves are forced toward the valley bottom because height must equal zero
at station zero (Equation 1). Yet non-zero points near the origin pull up the lower end of the regressing line in
a manner similar to that illustrated in Figure 6B, resulting in greatly reduced exponents (0-23 and 0-21). This
provides a graphic example of the control exerted on functions by points near the origin and assignment of
the coordinate system.

Centre data omitted

Power functions derived using no valley-bottom data increased explained variance in most cases and
improved models in some cases, but some of the resulting functions remain inappropriate models. For exam-
ple, Tenaya Canyon functions, which were convex-upward with all contour data, became linear (f = 0-999)
when centre data were omitted below an elevation of 1870 m, but the new models under-predict elevations
for much of the valley bottom (Figure 7A).

Power functions were successfully derived by omitting points on the two upper Bear Valley sections. A
pair of power functions derived for BV1 using only data above the colluvium at 1475m produced profiles
with high explained variances (Figure 6A; Table II). The left-side exponent changed very little through
the omission of points, but the right-side exponent is much larger. The exponents (2-49 and 2-33) on both
sides are higher than those commonly reported. The power function on the left side of BV2 also yielded
increased explained variance by eliminating valley-centre data, but extrapolation of the regression line pre-
dicts valley-bottom elevations 5 to 15m higher in places than the present surface. Although coefficients of
determination increased, smaller sample sizes and ranges offset the benefits. Furthermore, predicted val-
ley-bottom elevations remain dependent on the specification of the coordinate system.

Alternative coordinate systems

To test the sensitivity of power function exponents to coordinate system locations as part of an evaluation
of the Aniya and Welch (1981) iterative method, three sections were subjected to recalculation of power func-
tions using vertically or horizontally shifted coordinates. Power functions were recalculated with origins of
the coordinate systems arbitrarily reset to 50 m below a raised surface using (1) all contour data and (2) no
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centre data below 1475m at BV1, or below 1450 m at BV2 (Table II). Elevations were incremented by 50 m
and logged, and regressions were run as before.

Redefinition of the vertical axis resulted in substantial decreases in power function exponents and
increases in coefficient d in all eight trials (Table II). Explained variance for functions generally decreased
slightly with the lowered origin, although it increased in a few functions. Origins were also shifted horizon-
tally at BV1 by 158 m, from the valley centre at 2000 m to a centre at 1842 m corresponding to the present
valley thalweg identified by a non-linear visual contour interpolation. Resulting power functions have sub-
stantially different exponents, while changes in explained variance are relatively small (Table II). Placement
of the coordinate system is a dominating factor determining power function exponents, even when no valley-
bottom data are included in the analysis. Yet subtle changes in regression parameters cast doubt on the
potential for identifying the appropriate function by iterations to maximize strength of regressions, as advo-
cated by Aniya and Welch (1981).

To partition slopes using the power function model, it is necessary to identify the elevation of the hypothe-
tical surface in advance by referencing the vertical axis origin to zero at the surface. In Tenaya Canyon,
power functions were derived by redefining the vertical origin at the top of the bench surface. The resultant
functions describe the upper valley very well, with explained variance of 97 and 99 per cent and exponents of
2-2 (Figure 7B; Table II). The requirement to specify the valley-bottom elevation, however, limits the use of
the power model as an objective method for identifying morphological components of complex valleys. A
preferred function would be derived by a curve-fitting technique that utilizes valley-side data independently
of the position of the valley bottom.

Discussion

Power functions fitted to 14 half-valley forms by several different techniques produced exponents ranging
from 0-21 to 3-30. High exponents of wide Bear Valley profiles and low exponents for the narrow non-
stepped South Yuba profiles corroborate the validity of using power function exponents as a general
measure of valley morphology, if used with caution and standardized procedures. However, several funda-
mental limitations to the use of power functions as indicators of overall valley shape exist. First, the log-
least-squares procedure is strongly influenced by local valley-bottom morphology, which can suppress the
influence of overall valley form (Harbor and Wheeler, 1992). Second, the need to locate the coordinate sys-
tem precisely at the valley-bottom centre poses problems in many valleys. Sensitivity of Bear Valley power
function exponents to shifts in the coordinate system origin indicates that exponent values are not a robust
measure of overall valley form. Third, power functions are sensitive to the sampling method employed; quite
different results were obtained by fitting functions to different valley-bottom data permutations. These three
sources of variation indicate that exponent values are subject to arbitrary operational decisions and sam-
pling artifacts that can preclude comparisons between studies. Even where the bedrock surface is exposed
and easily identified, exponents may vary in response to factors independent of glacial processes.

The inference of glacial erosion processes from valley morphology is complicated by non-morphological
factors such as lithology (Augustinus, 1992a). These difficulties are compounded by form uncertainties when
interpretations are based on power function exponents. Exponents are highly sensitive to valley-bottom
morphology which is prone to alterations of post-glacial fluvial, colluvial and other non-glaciogenic pro-
cesses. Exponents are also sensitive to coordinate placement, and there is no theoretical rationale for select-
ing the iterative or any other method of deriving functions.

It would be inappropriate to interpret the high Bear Valley exponents as the result of more intensive
glaciation of Bear Valley. Both valleys were subjected to at least two major glacial advances, but the shallow,
gently sloping Bear Valley is an exhumed palaeovalley formerly filled with unconsolidated lahars, while the
steep Yuba Gorge is developed in granite and has been deepening rapidly (James, in press). Furthermore,
Bear Valley narrows and steepens at and below BV3 corresponding to changes in bedrock and slope. Valley
gradients and lithology appear to be very important in explaining the dichotomy in valley shapes between
Bear Valley and Yuba Gorge rather than duration or other measures of glacial intensity. If fact, Yuba Gorge
was more intensely glaciated than Bear Valley in terms of depth, ice velocities and discharges, yet it has much
lower power function exponents.
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Contour sample under-representation of valley bottoms did not pose a problem for power functions in
sediment-filled sections, where the addition of points seriously degraded regressions. In fact, omission of
valley-bottom data increased explained variance in most cases. Owing to the sensitivity of power functions
to valley-bottom data, better results for overall valley morphology can be obtained by minimizing this
information, so that the valley-wall morphology can exert the dominant control. Valley-bottom data that
are included should be precisely measured, but these points can exert such a dominant control on functions
that the resulting model fits poorly up on the valley sides. Thus, valley-bottom data are best used where the
objective is to model the basal ice configuration rather than to characterize overall valley morphology.

Stepped valley sections cannot be modelled by any single simple function, so it is not surprising that power
functions were unsuccessful in modelling these forms. For deeply notched valley floors, functions based on
all contour data are generally linear or convex-upward (f < 1-05). This remained true with the omission of
valley-bottom data except at SY1-R, where points on a broad rock bar were omitted. Aniya and Welch
(1981) applied power functions to stepped profiles by dividing side slopes into two segments and applying
separate functions to each segment. This technique was not attempted because using four functions to
express overall morphology of a single valley transect is unwieldy and does not avoid the problems
previously outlined.

In short, power functions can fit a wide variety of forms, but they are very sensitive to valley-bottom
features, they require precise specification of the coordinate system, which is often unknown, they are incap-
able of objectively partitioning complex valleys into separate elements, and sample sizes are greatly reduced
by dividing valleys into halves. It is desirable, therefore, to have a model that is robust to subtle valley-bot-
tom changes, is not based on a coordinate system centred on the valley bottom, expresses total valley form,
utilizes the entire sample, and can be used to partition polymorphic valley components.

POLYNOMIAL MODEL RESULTS

The goodness of fit of power and polynomial functions should not be compared simply by evaluation of
regression statistics, because polynomials include both valley sides in one function of overall form. They pro-
vide both parameters required to evaluate overall valley form: valley wall curvature and width.

All contour data

Polynomial functions derived for the two upper Bear Valley transects using all contour data have
explained variance as high as or higher than variance explained by power functions using the same data
(Table II and III). In addition, sample sizes are doubled, and regression errors are reasonably well distrib-
uted. For example, the first Bear Valley transect (BV1) yields an explained variance of 98-8 per cent with a
distribution of regression errors that is only systematic at sites of post-glacial erosion and deposition (Figure
6C). Results for BV2 are similar. This good polynomial fit to a valley eroded into incompetent rock free of
structural controls suggests that the function may in some cases approximate a form adjusted to glacial
processes.

In bedrock valleys, the success of polynomial functions must be considered in the context of various
degrees of convexity, asymmetry or polymorphism. The lower Bear Valley section (BV3) is stepped and
asymmetric, and the polynomial model is inappropriate. In Tenaya Canyon, the stepped surface could
not be accurately modelled by the polynomial function (Figure 7B), but valley symmetry and bench accor-
dance allow it to be partitioned as is demonstrated in the next section.

Fitting polynomials to transects in the Yuba Gorge met with variable success since non-parabolic sections
can only be approximated by the quadratic function. On transect SY1, asymmetry due to a broad, flat, rock
bar resulted in poor fit and the function provides only a first approximation of valley geometry (R* = 93 per
cent). Transect SY2, a deep, narrow, inner gorge cut into one side of a broad, shallow higher valley (Figure
4), cannot be modelled by a single simple function, but is partitioned using polynomials in the next section.
Convex-upward valley-side slopes on transect SY3 result in systematic errors which limit the polynomial



428 L. A. JAMES

function validity to a first approximation of valley form (Figure 5A). In this case, the pair of power functions
provided superior models, although their exponents imply upward concavity.

Centre data omitted and valley partitioning

Omission of valley-bottom data improved many polynomial models both by increasing explained variance
(Table III) and by reducing systematic errors. This technique allows valley walls to provide the dominant
signal and ignores valley-bottom forms completely. On BV1 the function fits valley walls very well, and
explained variance increased from 98-8 to 99-4 per cent (Figure 6C); however, the predicted 39 m depth of
valley alluvium appears excessive given bedrock outcrops exposed elsewhere in the outwash. This may be
due to post-glacial effects. Not only has the valley bottom been alluviated, but also upper valley walls of
unconsolidated andesitic breccia have been eroded. On BV2 the response to data limitation was more subtle,
with little change in regression strength or model coefficients. The predicted maximum depth to bedrock on
this transect is about 4m below the present alluvial floor. Polynomial functions were derived for BV3 in two
permutations, omitting valley-bottom data at two levels. As a result of asymmetry, stepped surfaces and dis-
cordant benches, these functions are not viable and partitioning is not feasible.

The centre-omission method allows the use of polynomials to partition polymorphic forms. Omission of
valley-bottom points below 1870m in Tenaya Canyon produces a viable polynomial model that not only
explains 98 per cent of the variance in elevation, but also describes a surface corresponding to the bedrock
bench distinct from the lower inner canyon (Figure 7C). This method provides an objective means of separ-
ating the two canyon forms, regardless of the genetic interpretation. Polynomials were also used to differ-
entiate between upper and lower surfaces in SY2. In contrast to the overall polynomial model for this
section, separate models for an upper and lower portion of the canyon, split at 1525 m elevation, are statis-
tically strong and viable (Figure 4). This partitioning method allows the application of equations presented
in a later section to calculate geometric characteristics of the valley components.

Discussion

Polynomial functions are valuable as a succinct and explicit model of the entire valley form. As with power
functions, polynomials can provide valid and statistically significant expressions of glacial valley form. These
functions not only fit the data well, but they also provide a substantial amount of morphological information
that is explored in the next section. Quadratic equations express a parabolic form and are inappropriate for
convex-upward side slopes, asymmetrical valleys and stepped slope profiles. Although higher-order polyno-
mials can express more complex forms, principles of parsimony and model sensitivity may preclude their use.
Further, it may be difficult to interpret the many terms in high order expressions (Augustinus, 1992a). Alter-
native functions that treat valley sides individually (e.g. power functions) may be superior models for con-
vex-upward and asymmetrical valleys.

‘Where asymmetry is the result of two form components, such as a notch cut into one side of a broad, high
valley, it may be possible to partition the valley objectively into its component parts using polynomials. Iso-
lation of upper and lower valley components in this manner may prove useful not only for geometric
measurements and model parameterizations, but also for the identification of polycyclic or multistadial
surfaces.

VALLEY QUADRATIC PARAMETERS

Quadratic equations have several useful properties, and if a second-order polynomial can be fitted to a valley
cross-section in a statistically unbiased and significant manner, these properties can be used to describe the
valley geometry. For example, coefficient a in equation 2 is the elevation of the datum used to describe the
coordinate axis, coefficient b is slope at that point, and coefficient ¢ provides shape information for the curve.
Polynomial coefficients for the seven sections are related to overall valley form (Table III). The broad, shal-
low BV1 and BV2 sections have low absolute values of b and ¢ while the deep, narrow SY3 and SY2 inner
Gorge and Tenaya Canyon sections have high absolute values.
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Table IV. Valley parameters from polynomial functions

Data Top Mean Max. Form

Elev. Epin width Area depth depth ratio Boundary  Radius:

range a-—b2jdc  —bjc -b*/6¢ b*/6c b*/4c —b/4 length area/
D (ft) (m) (m) (m?) (m) (m) (m) (m) length
BVI Al 1381 2288 415481 182 272 0119 2372 175
BVl >1475 1349 2298 481577 210 314 0137 2408 200
BV2 Al 1358 2360 186570 207 309 0131 2464 197
BV2  >1500 1366 2355 472281 201 301 0128 2454 192
syl Al 1253 1282 314921 246 368 0287 1525 206
SY2  >1540 1525 2342 256811 110 165 0-070 2372 108
SY2 <1540 1240 971 217921 225 337 0-347 1226 178
SY3 Al 1122 1605 553586 346 517 0:322 1977 280
Ten >1870 1791 1443 387775 269 403 0-280 1703 228

Systematic changes in polynomial coefficients can be exploited by deriving geomorphic parameters from
the quadratic equations. Several morphometric parameters can be mathematically determined from the coef-
ficients of the quadratic equation. These parameters can be used for geometric or volumetric calculations of
trough dimensions, for inputs to glaciological or geomorphic models, and for testing process-response
hypotheses. Representative values of the following parameters from the study transects are presented in
Table IV.

Some parameters can be analytically derived from the first derivative of the elevation function defined in
Equation 2:

dE/dS = b+ 2cS 4)
where dE/dS is valley-side slope at any point at a horizontal distance S from the datum. At the datum S is
zero and b equals slope. At the valley centre elevation reaches a minimum and slope is zero so:

Sm=-b/2¢ (5)
where Sy, is distance to the valley midpoint (parabolic vertex). The midpoint of the quadratic is the lowest

point, so substitution of Equation 5 into Equation 2 yields an expression for the minimum elevation on the
transect (Ep,):

Enin = a— b /4c (6)

Elevation of the vertical datum (coefficient a) is on a linear scale, so changes to it will shift the function up or
down without altering the shape or size of the model cross-section. For example, subtraction of the minimum
elevation references the transect to an elevation of zero at the valley bottom.

With the coordinate system on the valley wall, a number of depth and shape parameters can be derived.
Doubling the midpoint value of Equation 5 yields the valley top width (W):

W =—bjc 0]
Valley depth can be calculated at any horizontal location by defining the valley top as a flat surface level
with the initial point. Maximum elevation is given by coefficient a, so depth (D) at any point S is found by

subtracting elevation at the point from the first coefficient:

D = —bS — cS* (8)
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In a similar manner, maximum depth (Dy,) can be calculated using Equation 6 to subtract minimum eleva-
tion from the first coefficient:

Dy = b /4c 9)
The polynomial equivalent of form ratio (F) is the ratio of maximum depth to width:
F=-b/4 (10)

An expression for valley cross-section area (4) can be derived by integrating valley depth (Equation 8) in
respect to distance across the width of the valley:

A= Jw(—bS ~ c8?)dS = ~[bS?/2 + ¢S /3] ;%= —b3 /6c (11)
0

Mean depth (D) is the ratio of cross-section area to top width:
Dy = (=b%/6¢%)/(~b/c) = b /6c (12)

A comparison of Equations 12 and 9 reveals that mean depth is equal to 2/3 maximum depth in quadratic
valleys.

The boundary length of the ice-land contact (L), useful for modelling erosion and boundary shear stress,
can be calculated by integrating the hypotenuse of the differentials of elevation and lateral distance with
respect to distance across the transect:

L= Jw[l + (AE/dS)]'2ds = an +(b+2e8)7"2ds (13)
0 0

A quality of the second-order polynomial is that this integral can be solved using the inverse hyperbolic func-
tion sinh ™' and simplified to an expression of boundary length in terms of coefficients b and ¢:

L=1/2[In((1+5%)"2 - b) — b(1 + b%)'/] (14)

Valley radius, which is analogous to hydraulic radius and can be used to compute average boundary shear
stress, can be calculated as the ratio of valley cross-section area to boundary length using the results of Equa-
tions 11 and 14. A comparison of mean depth with valley radius values on Table IV reveals that radius
approaches mean depth as valleys become wider and shallow (BV1 and BV2), but is considerably smaller
than mean depth for the deep and narrow valleys.

The shape factor (), equal to the product of the trough-section area and boundary perimeter length
divided by the maximum depth (Augustinus, 1992), can be derived utilizing Equations 9, 11 and 14:

S = AL/Dpgy = —b/3c[In((1 + b%)'/2 — b) — b(1 + 7)) (15)

CONCLUSIONS

Power and polynomial functions were tested on seven glaciated Sierra Nevada valleys using three cross-
section sample methods: (1) all contour data; (2) contour data augmented by interpolation across valley bot-
toms; and (3) all valley-bottom data omitted. As expected from previous studies, power functions yielded
concave-upward forms for most non-stepped profiles. However, function exponents were unreliable indica-
tors of overall valley form. Function exponents for non-stepped profiles ranged widely from 115 to 3-3, but
in many cases were mathematical artifacts of valley-bottom microtopography, selection of a coordinate sys-
tem, or sample methods, rather than overall valley form. Sensitivity of power function exponents to local
valley-bottom morphology corroborates the findings of Harbor and Wheeler (1992), limits their reliability
as expressions of overall valley form, and suggests that the greatest utility of power functions lies in describ-
ing conditions in the basal segment of the profile.

Attempts to develop more appropriate functions of overall valley form in alluviated troughs by i
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sample sizes on valley bottoms failed. In fact, the best power function models of the two alluviated valleys
were obtained by omitting all valley-bottom and toe-slope data from the curve-fitting process. Power func-
tions remained dependent on the precise specification of the coordinate system origins, however, which can
be difficult to validate with data drawn from contour maps.

As with all methods of inferring glacial erosion processes from valley morphology, non-glaciogenic factors
limit the validity of inferring intensity of glaciation from power function exponents. The two upper Bear Val-
ley sections are much wider and shallower that the others and have much higher power function exponents
than sections in Yuba Gorge. However, both valleys appear to have had similar glaciation chronologies, and
morphological differences are presumably more a function of lithology and valley gradient than glacial
history in accordance with the findings of Augustinus (1992a). Such non-glaciogenic factors that influence
valley morphology also complicate the inference of process from polynomial parameters. With polynomial
functions, however, there may be less mathematical uncertainty about valley shape.

Second-order polynomials provide a succinct, robust function for expressing glacial valley form that is not
dependent on specification of the valley bottom. Polynomials were successfully applied to most non-stepped,
symmetrical valley sections. The excellent fit of these models in the two Bear Valley transects developed in
casily worked materials suggests that the polynomial form can be an appropriate model of glacially eroded
morphology when structural controls are not dominant. These models also allow the partitioning of some
stepped profiles into their component parts, and this technique successfully isolated inner gorges 200 and
300m deep in Tenaya Canyon and Yuba Gorge, respectively.

Mathematical manipulation of polynomial coefficients provides quantitative information on quadratic
valley sections including slopes, elevations, midpoint location, top width, depths, area, boundary length
and shape. Testing with large numbers of glaciated valley cross-sections is needed to validate the findings
of this report and to elucidate the environmental relationships between polynomial parameters and valley
genesis. Through this endeavour, morphological features can be quantified and process-response relation-
ships may emerge.
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